Jump to content

Timeline of atomic and subatomic physics

From Wikipedia, the free encyclopedia

A timeline of atomic and subatomic physics, including particle physics.

Antiquity

[edit]
  • 6th - 2nd Century BCE Kanada (philosopher) proposes that anu is an indestructible particle of matter, an "atom"; anu is an abstraction and not observable.[1]
  • 430 BCE[2] Democritus speculates about fundamental indivisible particles—calls them "atoms"

The beginning of chemistry

[edit]

The age of quantum mechanics

[edit]

Quantum field theory

[edit]

The formation and successes of the Standard Model

[edit]

See also

[edit]

References

[edit]
  1. ^ Narayan, Rupa (2013). Space, Time and Anu in Vaisheshika (PDF). Louisiana State University, Baton Rouge, USA.
  2. ^ Teresi, Dick (2010). Lost Discoveries: The Ancient Roots of Modern Science. Simon and Schuster. pp. 213–214. ISBN 978-1-4391-2860-2.
  3. ^ Jammer, Max (1966), The conceptual development of quantum mechanics, New York: McGraw-Hill, OCLC 534562
  4. ^ Tivel, David E. (September 2012). Evolution: The Universe, Life, Cultures, Ethnicity, Religion, Science, and Technology. Dorrance Publishing. ISBN 9781434929747.
  5. ^ Gilbert N. Lewis. Letter to the editor of Nature (Vol. 118, Part 2, December 18, 1926, pp. 874–875).
  6. ^ The origin of the word "photon"
  7. ^ The Davisson–Germer experiment, which demonstrates the wave nature of the electron
  8. ^ A. Abragam and B. Bleaney. 1970. Electron Parmagnetic Resonance of Transition Ions, Oxford University Press: Oxford, U.K., p. 911
  9. ^ Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 0-691-12575-9.
  10. ^ Richard Feynman; QED. Princeton University Press: Princeton, (1982)
  11. ^ Richard Feynman; Lecture Notes in Physics. Princeton University Press: Princeton, (1986)
  12. ^ Feynman, R.P. (2001) [1964]. The Character of Physical Law. MIT Press. ISBN 0-262-56003-8.
  13. ^ Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 0-691-12575-9.
  14. ^ Schweber, Silvan S.; Q.E.D. and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) ISBN 0-691-03327-7
  15. ^ Schwinger, Julian; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) ISBN 0-486-60444-6
  16. ^ *Kleinert, H. (2008). Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation (PDF). World Scientific. ISBN 978-981-279-170-2.
  17. ^ Yndurain, Francisco Jose; Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons, Springer Verlag, New York, 1983. ISBN 0-387-11752-0
  18. ^ a b Frank Wilczek (1999) "Quantum field theory", Reviews of Modern Physics 71: S83–S95. Also doi=10.1103/Rev. Mod. Phys. 71.
  19. ^ {{cite journal| author=F. Englert, R. Brout| year=1964| title=Broken Symmetry and the Mass of Gauge Vector Mesons| journal=Physical Review Letters| volume=13 | pages=321–323| doi=10.1103/PhysRevLett.13.321| bibcode=1964PhRvL..13..321E| issue=9| last2=Brout| doi-access=free{{
  20. ^ {{cite journal| author=P.W. Higgs| year=1964| title=Broken Symmetries and the Masses of Gauge Bosons| journal=Physical Review Letters| volume=13 | pages=508–509| doi=10.1103/PhysRevLett.13.508| bibcode=1964PhRvL..13..508H| issue=16| doi-access=free{{
  21. ^ {{cite journal| author=G.S. Guralnik, C.R. Hagen, T.W.B. Kibble| year=1964| title=Global Conservation Laws and Massless Particles| journal=Physical Review Letters| volume=13 | pages=585–587| doi=10.1103/PhysRevLett.13.585| bibcode=1964PhRvL..13..585G| issue=20| last2=Hagen| last3=Kibble| doi-access=free{{
  22. ^ {{cite journal| author=G.S. Guralnik| year=2009| title=The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles| journal=International Journal of Modern Physics A| volume=24 | pages=2601–2627| doi=10.1142/S0217751X09045431| arxiv=0907.3466|bibcode = 2009IJMPA..24.2601G| issue=14| s2cid=16298371{{
  23. ^ {{cite journal|author=T.W.B. Kibble|year=2009|title=Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism|journal=Scholarpedia|volume=4 |issue=1 |page=6441|doi=10.4249/scholarpedia.6441|bibcode = 2009SchpJ...4.6441K |doi-access=free{{
  24. ^ M. Blume; S. Brown; Y. Millev (2008). "Letters from the past, a PRL retrospective (1964)". Physical Review Letters. Retrieved 2010-01-30.
  25. ^ "J. J. Sakurai Prize Winners". American Physical Society. 2010. Retrieved 2010-01-30.
  26. ^ Weinberg, Steven; The Quantum Theory of Fields: Foundations (vol. I), Cambridge University Press (1995) ISBN 0-521-55001-7. The first chapter (pp. 1–40) of Weinberg's monumental treatise gives a brief history of Q.F.T., pp. 608.
  27. ^ Weinberg, Steven; The Quantum Theory of Fields: Modern Applications (vol. II), Cambridge University Press:Cambridge, U.K. (1996) ISBN 0-521-55001-7, pp. 489.
  28. ^ * Gerard 't Hooft (2007) "The Conceptual Basis of Quantum Field Theory" in Butterfield, J., and John Earman, eds., Philosophy of Physics, Part A. Elsevier: 661-730.
  29. ^ Wilczek, Frank (1999). "Quantum field theory". Reviews of Modern Physics. 71 (2): S85–S95. arXiv:hep-th/9803075. Bibcode:1999RvMPS..71...85W. doi:10.1103/RevModPhys.71.S85. S2CID 279980.
  30. ^ a b c "Fermilab | Science | Particle Physics | Key Discoveries". www.fnal.gov. Retrieved 2020-08-26.
  31. ^ Pais, Abraham; Inward Bound: Of Matter & Forces in the Physical World, Oxford University Press (1986) ISBN 0-19-851997-4 Written by a former Einstein assistant at Princeton, this is a beautiful detailed history of modern fundamental physics, from 1895 (discovery of X-rays) to 1983 (discovery of vectors bosons at C.E.R.N.)
  32. ^ Fukuda, Y.; et al. (Super-Kamiokande Collaboration) (24 August 1998). "Evidence for Oscillation of Atmospheric Neutrinos". Physical Review Letters. 81 (8): 1562–1567. arXiv:hep-ex/9807003. Bibcode:1998PhRvL..81.1562F. doi:10.1103/PhysRevLett.81.1562.
  33. ^ "Press Release: The 1999 Nobel Prize in Chemistry". 12 October 1999. Retrieved 30 June 2013.
  34. ^ "New State of Matter created at CERN". CERN. Retrieved 2020-05-22.
  35. ^ "Lene Hau". Physicscentral.com. Retrieved 2013-01-30.
  36. ^ "RHIC Scientists Serve Up 'Perfect' Liquid". Brookhaven National Laboratory. Retrieved 2020-08-26.
  37. ^ "CERN experiments observe particle consistent with long-sought Higgs boson". CERN. Retrieved 2020-05-22.
  38. ^ LHCb Collaboration (4 June 2014). "Observation of the Resonant Character of the Z ( 4430 ) − State". Physical Review Letters. 112 (22): 222002. doi:10.1103/PhysRevLett.112.222002. hdl:2445/133080. PMID 24949760. S2CID 904429.
  39. ^ T2K Collaboration (10 February 2014). "Observation of Electron Neutrino Appearance in a Muon Neutrino Beam". Physical Review Letters. 112 (6): 061802. arXiv:1311.4750. Bibcode:2014PhRvL.112f1802A. doi:10.1103/PhysRevLett.112.061802. hdl:10044/1/20051. PMID 24580687. S2CID 2586182.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  40. ^ OPERA Collaboration (28 October 2014). "Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment". Progress of Theoretical and Experimental Physics. 2014 (10): 101C01. arXiv:1407.3513. doi:10.1093/ptep/ptu132.
[edit]